Вычисление информационного объема

Задание 13 (повышенный уровень, время – 3 мин)

Краткая теория

- С помощью І бит можно закодировать **N** = 2 различных вариантов (символов).
- Таблица степеней двойки показывает, сколько вариантов **N** можно закодировать с помощью **I** бит:

I бит	1	2	3	4	5	6	7	8	9	10
N вариантов	2	4	8	16	32	64	128	256	512	1024

- При измерении количества информации принимается, что:
 - 1 байт (1 Б) = 8 бит (8 б);
 - 1 килобайт (1 Кб) = 1024 байта (1024 Б);
 - 1 мегабайт (1Мб) = 1024 килобайта (1024 Кб)
- Чтобы найти информационный объем сообщения (текста) I_{Σ} , нужно умножить количество символов K на число бит на символ I: $I_{\Sigma} = K * I$.
- Мощность алфавита это количество символов в этом алфавите

В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его

номер с исп количества спортсмена. сообщения, з промежуточн

- 70 бит
- 2) 70 байт
- 3) 490 бит
- 4) 119 байт

Возможные ловушки:

- дано число, которое есть в условии (неверные ответы 70 бит, 70 байт, 119 байт), чтобы сбить случайное угадывание
- указано правильное число, но другие единицы измерения (мог быть вариант 490 байт)
- расчет на невнимательное чтение условия: можно не заметить, что требуется определить объем только 70 отсчетов, а не всех 119 (мог быть вариант 119*7=833 бита).

В некоторой ст символов состав используется 26 порядке. Кажды минимально возмномер – одина количеством ба необходимый для

- 1) 20 байт
- 2) 105 байт
- 3) 120 байт
- 4) 140 байт

Решение:

- всего используется 26 букв + 10 цифр = 36 символов.
- для кодирования 36 вариантов необходимо использовать 6 бит, так как $2^5=32 < 36 < 2^6=64$.
- таким образом, на каждый символ нужно 6 бит.
- полный номер содержит 7 символов, каждый по 6 бит, поэтому на номер требуется $6 \cdot 7 = 42$ бита.
- по условию каждый номер кодируется **целым** числом байт (в каждом байте 8 бит), поэтому требуется 6 байт на номер 5.8=40 < 42 < 6.8=48.
- на 20 номеров нужно выделить 6·20=120 байт (ответ 3).

Для регистрации на сайте некоторой страны пользователю требуется придумать пароль. Длина пароля – ровно 11 символов В качестве символов используются десятичные причём все буквы испол заглавные (регистр буквы Под хранение каждого та возможное и одинаковое посимвольное кодирован минимально возможным к Определите объём памяти

- 1) 540 байт
- 2) 600 байт
- 3) 660 байт
- 4)720 байт

Решение:

- всего используется 12 букв заглавн. + 12 букв строчн. + 10 цифр = 34 символа.
- кодирования 34 символов необходимо использовать 6 бит, так как $2^{5}=32 < 34 < 2^{6}=64$.
- таким образом, на каждый символ нужно 6 бит.
- для хранения 11 символов пароля необходимо $6 \cdot 11 = 66$ бит.
- по условию пароль кодируется целым числом байт (в каждом байте – 8 бит), поэтому требуется 9 байт на номер 8.8 = 64 < 66 < 9.8 = 72
- 60 паролей занимают 9.60=540 байт (ответ 1).

В корзине лежат 32 клубка шерсти, из них 4 красных. Сколько бит информации несет сообщение о том, что достали клубок красной шерсти?

- 1) 2
- 2) 3
- 3) 4
- 4) 32

Решение:

- красные клубки шерсти составляют 1/8 от всех.
- по формуле Шеннона находим количество информации в битах:

$$I_k = -\log_2 P_k \quad I_k = -\log_2 \frac{1}{8} = \log_2 8 = 36 \text{ mma}$$

• выбор 1 из 8 вариантов – это информация в 3 бита (ответ 2)

В зоопарке 32 обезьяны живут в двух

забо. обез

соде

CKOJ

Решение:

- количество информации в сообщении о произошедшем событии с номером i равно $I_i = -\log_2 P_i$, где P_i вероятность этого события; таким образом, получаем вероятность того, что заболевшая обезьяна живет в вольере A: $P_1 = 2^{-I_1} \Rightarrow P_1 = 2^{-4} = \frac{1}{16}$
- предварительная информация где живет заболевшая обезьяна отсутствует, поэтому можно считать, что вероятность равна количеству обезьян в вольере если вероятность равна 1/16, то в вольере живет 1/16 часть всех обезьян: 32/16 = 2 обезьяны поэтому в вольере Б живут все оставшиеся 32 2 = 30 обезьян

30

Задание 1.

В некоторой стране автомобильный номер длиной 6 символов составляется из заглавных букв (всего используется 12 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти в байтах, необходимый для хранения 32 автомобильных номеров.

Задание 2.

Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100 процентов, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений в байтах.

Задание 3.

Обычный дорожный светофор без дополнительных секций подает шесть видов сигналов (непрерывные красный, желтый и зеленый, мигающие желтый и зеленый, красный и желтый одновременно). Электронное устройство управления светофором последовательно воспроизводит записанные сигналы. Подряд записано 100 сигналов светофора. Сколько байт нужно для записи этих данных?

(Условие некорректно, имеется в виду количество целых байтов.)

Задание 4.

В некоторой стране автомобильный номер длиной 5 символов составляется из заглавных букв (всего используется 30 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер - одинаковым и минимально возможным количеством байт. Определите объем памяти в байтах, необходимый для хранения 50 автомобильных номеров.

Задание 5.

В некоторой стране автомобильный номер длиной 6 символов составляется из заглавных букв (всего используется 19 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер - одинаковым и минимально возможным количеством байт. Определите объем памяти в байтах, необходимый для хранения 40 автомобильных номеров.

Задание 6.

Сколько существует различных последовательностей из символов «плюс» и «минус», длиной ровно в пять символов?

Задание 7.

Шахматная доска состоит 8 столбцов и 8 строк. Какое минимальное количество бит потребуется для кодирования координат одного шахматного поля?

Задание 8.

Двое играют в «крестики-нолики» на поле 4 на 4 клетки. Какое количество информации в битах получил второй игрок, узнав ход первого игрока?

Задание 9.

В корзине лежат 8 черных шаров и 24 белых. Сколько бит информации несет сообщение о том, что достали черный шар?

Задание 10.

Объем сообщения равен 11 кбайт. Сообщение содержит 11264 символа. Какова мощность алфавита?

Задание 11.

Для кодирования секретного сообщения используются 12 специальных значковсимволов. При этом символы кодируются одним и тем же минимально возможным количеством бит. Чему равен информационный объем сообщения в байтах длиной в 256 символов?

Задание 12.

Мощность алфавита равна 64. Сколько кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?

Задание 13.

Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем сообщения в битах, состоящего из 180 нот?

Задание 14.

В коробке лежат 64 цветных карандаша. Сообщение о том, что достали белый карандаш, несет 4 бита информации. Сколько белых карандашей было в коробке?

Задание 15.

За четверть Василий Пупкин получил 20 оценок. Сообщение о том, что он вчера получил четверку, несет 2 бита информации. Сколько четверок получил Василий за четверть?

Задание 16.

В закрытом ящике находится 32 карандаша, некоторые из них синего цвета. Наугад вынимается один карандаш. Сообщение «этот карандаш – НЕ синий» несёт 4 бита информации. Сколько синих карандашей в ящике?

Задание 17.

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы А, Б, В, Г, Д, Е. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт, при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит. Определите, сколько байт необходимо для хранения 20 паролей.

Задание 18.

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 21 символа и содержащий только символы A, D, F, H, X, Y, Z (таким образом, используется 7 различных символов). Каждый такой пароль в компьютерной системе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Укажите объём памяти байтах, отводимый этой системой для записи 40 паролей. В ответе запишите только число, слово «байт» писать не нужно.

320

Задание 19.

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 9 символов и содержащий только символы из 10-символьного набора: A, B, C, D, E, F, G, H, K, L. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 6 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 100 пользователях.

Задание 20.

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 10 символов и содержащий только символы из 26-символьного латинского алфавита. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 6 байт на одного пользователя. Определите объём памяти (в байтах), необходимый для хранения сведений о 30 пользователях.

Задание 21.

Для регистрации на сайте необходимо продумать пароль, состоящий из 10 символов. Он должен содержать хотя бы 3 цифры, а также строчные или заглавные буквы латинского алфавита (алфавит содержит 26 букв). В базе данных для хранения сведения о каждом пользователе отведено одинаковое и минимальное возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственного пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт одинаковое для каждого пользователя. Для хранения сведений о 30 пользователях потребовалось 870 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе. В ответе запишите только целое число количество байт.

Задание 22.

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из 8-символьного набора: A, B, C, D, E, F, G, H. В базе данных для хранения сведений о каждом пользователе отведено одинаковое минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт, одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 320 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число – количество байт.

Задание 23.

Для хранения длинных чисел можно использовать алгоритм кодирования повторов (RLE), который заменяет повторяющиеся цифры (серии) на одну цифру и число её повторов. Например, число 999 после сжатия станет числом 39. Если длина серии превосходит 9, она разбивается на несколько серий длиной 9 и, возможно, ещё одну длиной меньше 9. После сжатия производится поразрядное кодирование, все цифры кодируются одинаковым и минимально возможным количеством бит. Сколько байт потребуется для сжатия и кодирования указанным способом числа 1230000000000555?

- 1) 100
- 2) 250
- 3) 300
- 4) 21
- 5) 400
- **6)** 540
- 7) 300
- 8) 240
- 9) 3
- 10)400
- 11)640

Ответы